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The scattering of long water waves by an array of bodies is investigated using the 
method of matched asymptotic expansions. Two particular geometries are 
considered : a group of vertical cylinders extending throughout the depth and a group 
of floating hemispheres. From these solutions, the low-frequency limit of the ratio of 
the mean drift force on a group of N bodies to that on a single body is calculated. For 
a wide range of circumstances this drift-force ratio is N 2 ,  which is in agreement with 
previous numerical work. Further drift-force enhancement is possible for certain 
configurations of vertical cylinders. 

1. Introduction 
Bodies floating in irregular seas may experience low-frequency oscillations as a 

result of second-order interactions between different frequency components of the 
incident waves. Newman (1974) has shown that the slowly varying forces that give 
rise to these oscillations can be approximated in terms of the mean drift forces on the 
body in regular waves. Though also a second-order effect, the mean drift force is 
determined by the first-order solution and so is more easily calculated than the 
slowly varying force. Consequently, there has been considerable interest in the mean 
drift force on a body. For further information concerning the various components of 
the second-order force see, for example, Pinkster (1979). 

Recent numerical results of Eatock-Taylor & Hung (1985) concerning mean drift 
forces on multi-column structures have shown that interaction effects between 
structural elements may be very important at low frequencies. Their work suggests 
that for certain geometries the mean horizontal drift force on a group of N bodies 
may be of the order of N 2  times the forces on a single body when the incident waves 
are long compared with the overall body size. In  a discussion accompanying that 
paper the present author indicated briefly how this ‘ N 2  law’ may be verified 
analytically for an array of widely spaced cylinders. In the present work a more 
rigorous and extensive investigation of this behaviour is undertaken. In particular, 
the long-wave limit of the mean drift force is calculated for an array of vertical 
cylinders extending throughout the water depth and for an array of hemispheres 
floating on water of infinite depth. In the former case the N2 law does not always hold 
- for closely spaced bodies there may be additional enhancement effects - but for an 
array of hemispheres the law is exact in the low-frequency limit. Consideration of a 
known solution for scattering by a single truncated cylinder suggests that any 
additional enhancement, as exhibited in the vertical-cylinder case, will be small for 
most floating bodies. 

As stated above, the mean.drift force is calculated from the solution of the linear 
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diffraction problem. A number of authors have proposed solution procedures for 
wave scattering by an array of arbitrary bodies that can, in principle, be used for all 
wave frequencies and body spacings, for example that due to Kagemoto & Yue 
(1986). However, none of these methods can yield, easily, analytical results for the 
long-wave limit. In the present work the problem of the scattering of long waves by 
an array of bodies is solved using the method of matched asymptotic expansions. The 
basic procedure is similar to that used by Balsa (1977, 1982, 1983) for work in 
acoustics on low-frequency flow through an array of bodies; consequently some 
details of the matching will not be given here. 

The horizontal mean drift force may be calculated from the linear diffraction 
potential in two ways, either by direct integration of a quadratic term over the body 
surface or indirectly from the far-field potential. Here the latter procedure, due to 
Maruo (1960), is employed, so the leading-order approximation to the far-field 
potential for long waves is required. The general formulation of the scattering 
problem is given in $2, while the solutions for an array of cylinders and an array of 
hemispheres are described in Of3 and 4 respectively. Finally, in $5,  expressions for the 
mean drift force are presented and discussed. 

2. General formulation 
A plane wavetrain of amplitude A and frequency w is incident upon an array of N 

fixed bodies in water of constant depth h. Cartesian coordinates (x, y, z )  are defined 
so that the (x, y)-plane corresponds to the mean free surface and the z-axis is directed 
vertically downwards. The origin of coordinates is chosen to be within the array. It 
will also be convenient to employ cylindrical polar coordinates (r, $, z )  and spherical 
polar coordinates (p ,  8, $), defined as shown in figure 1. Coordinate systems with 
origin at  the centre of the waterplane area of each body will also be used : a subscript 
j will indicate coordinates associated with body j. The origin of coordinate system j 
is at (2, y, z )  = (Q, T,, 0), while the position of body I relative to body j has polar 
coordinates (r,, $,) = (R,,, a,I). A plan view of the array is given in figure 2. 

The usual assumptions of the linearized theory of water waves are made, including 
those of inviscid, irrotational flow. Hence the fluid motion is described by a velocity 
potential 

4#jT(z, y, z, t )  = Re 

where g is the acceleration due to gravity. The complex-valued function g&(x, y, z )  
satisfies 

within the fluid, the linearized free-surface condition 

v2q5, = 0 (2.2) 

-+-(bT=O, '#T O2 z = o  
az 9 

(excluding the waterplane area of each body) and zero-flux conditions on the bed 
z = h and the wetted surface of each body. The scattered part of the wave field must 
also satisfy a radiation condition allowing only outward-propagating waves at  large 
horizontal distances from the array. 

The scattering problem is solved by the method of matched asymptotic expansions 
under the assumptions that ,u = kl 4 1 and E = all 4 1 (which together imply pe = 
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FIGURE 1. Definition of (a) cylindrical polar coordinates ( r ,  *, z) and (b)  spherical polar 
coordinates (p, 8, $) of the field point P.  

- 
X 

FIGURE 2. Plan view of array showing bodies j and 1. 

ka << 1). Here k is the wavenumber, related to the radian frequency o through the 

(2.4) 
dispersion relation 

1 is a typical body spacing and a is a typical body radius. The above assumptions 
indicate that the waves are long relative to the body separation and that the bodies 
are widely spaced relative to body size, though interaction effects beyond the lowest 
order in e will be included in the following analysis. In addition, the overall size of 
the array is restricted to be much less than the wavelength, and so the array must 
be of fmite horizontal extent. 

Following Balsa (1982, 1983), three flow regions are distinguished. These are: an 
outer region at large distances from the array where the lengthscale is k - l ;  an 
intermediate region within the array (but not ‘close’ to any body) where the 
lengthscale is I ;  and N inner regions surrounding each body where the lengthscale 
is a. In the outer region the scattered wave appears to be the result of singularities 
at  a single origin, whilst in the intermediate region the disturbance appears to be 
generated by singularities at  the origin of each body coordinate system. 

The previous work of Balsa makes it unnecessary to give full details of the solution 
derivation here. In particular the correct gauge functions for the various asymptotic 
expansions will be assumed from the outset. For each of the two body geometries 
considered the solution is presented in the following way. The potentials in each of 

w2 = gk tanh kh, 



472 P .  Mclver 

the three regions are expanded in terms of gauge functions in y ,  and the outer and 
intermediate expansions matched so that the leading-order outer solution is 
determined in terms of constants in the intermediate solution. The potentials in the 
intermediate and inner regions are further expanded in terms of gauge functions in 
6. The body boundary conditions are satisfied in the inner regions, and matching 
determines the intermediate solution and hence the outer solution. The final form of 
the far-field potential is a double expansion in y and E .  

3. An array of vertical cylinders 
Each body is taken to be a vertical circular cylinder of radius a, extending 

throughout the depth of the fluid. The incident wave travels in the direction of 
increasing x so that $* may be written 

where the first term within the braces represents the incident wave and # the 
scattered wave. Substitution of this expression for $T into (2.2) gives 

The free-surface condition (2.3) and the zero-flux condition on z = h are satisfied 
identically because of the special choice of form of $T. The function # must satisfy 
the boundary conditions 

on the wetted surfaces of the cylinders. 

3.1. Outer/intermediate matching 
Scaled coordinates for the outer region are defined by 

4 =  kx, $ =  ky, r ^ =  kr (3.4)  

so that, from (3.2)) $(a, 9)  ( = # ( x ,  y ) )  satisfies 

in the fluid region. In the intermediate region appropriate scaled coordinates are 
defined by 

and $(z, g) ( = $(x ,  y)) satisfies 

(3.6) 
r - g=E! - x=i, I ’  

a2d a2$ 
- + T + y 2 $  = 0 
a22 ag 

$ = y2$(2) + O(y3) 

(3.7) 

within the fluid. The outer and intermediate potentials are expanded in y as 

(3.8) 

and $ = +p2 lny$(2.’) +y2$(2) + o($) (3 .9)  
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respectively; here only those terms required to determine the outer potential to 
leading order are displayed explicitly. In the current work the order symbol O(@) is 
used to denote terms of order ,u8(lnp)t for all t greater than or equal to zero. A 
superscript within parentheses idcntifies individual terms within an expansion. 

The most general solution for @2) satisfying (3.5) and the radiation condition is 

d ( 2 )  = A~Z)H~(+)  + x (A:) cos m$ + 8:) sin m$)Hm(+),  (3.10) 

where H ,  denotes the Hankel function of the first kind and order m, and L@),A:~), 
. . . , Biz), . . . are complex constants to be determined from the matching. Substitution 
of (3.9) into (3.7) shows that each term in the expansion of 8, to the order displayed, 
is a solution of the two-dimensional Laplace equation. The most convenient form for 
each @ t )  ( t  = 1,2.1,2) is in terms of singularities within each body; thus 

$ t )  = A(t) + X B$) In F, + X (XfA cos m$, + BfA sin me,) F ; ~  , (3. 1 I )  

where At), +ji), . . . , B$, . . . are complex constants to be determined. The expansions 
to O(p2) of 9 and 6 may now be matched following the principles described by Van 
Dyke (1975). As a result the outer solution may be written in terms of the constants 
in the intermediate solution aa 

W 

m-1 

1 03 

N {  m-1 
0 

I-1 

$ 2 )  N 

d ( 2 )  = A H  ( +) +&i (Aj:) cos $ + Bji) sin $) H,(P), 

2i 
where r=  l+-((y-ln2) (3.13) 

(3.12) 
I-1 r 

K 

and y = 0.577215.. . is Euler’s constant. Most of the constants in the intermediate 
solution are still undetermined, though the following relations are noted : 

ZC) = 0, Bji) = 0, j = 1,2  ,..., N 

3.2. Intermediatelinner matching 
The scaled coordinates for the inner region of body j are defined by 

so that, from (3.2), &EI, g,) (= $(z, 9) )  satisfies 

The body boundary condition (3.3) becomes 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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As for the intermediate solution, (3.9), the inner solution is posed first as an 
expansion in p of the form 

$5 = p@) + p z  1n ,&pi) + ,d$jz) + q p 3 ) ,  (3.18) 

where each term displayed is a solution of Laplace’s equation. The individual terms 
of the expansions in p for 4 and $, are now expanded in E .  Beginning with the first 
non-zero term, the expansions for the inner potential are 

$jl) = & 1) + &Jjl, 2) + . . . (3.19) 

and $jz) = ,e$j29 1) + €2 In E $ f ,  2.1) + E26j2 .  2) + . . . . (3.20) 

The appearance of the e2 lneterm in (3.20) is due to a source-like term in # , 2 ) ;  all 
other gauge functions are powers of E. Similar expansions are adopted for the 
intermediate solution, though these contain only integer powers of E ,  beginning with 
E’. The expansion of the intermediate solution in E is equivalent to expanding the 
constant coefficients in (3.11), and this interpretation will be used here. An expansion 
for 6P.l) is not given above as it is particularly simple ; it turns out that only constant 
terms may be matched with the intermediate solution. The corresponding term in the 
intermediate expansion reduces to the same constant so that 

#.l) ” 4  = -(2.1) = K ( 2 . 1 )  0 (3.21) 

which, by (3.14), is determined by 2 i 2 ) .  

The body boundary conditions for $J1sl), 4 T . l )  and $j2s2) are, from (3.17), 

and 

(3.22) 

(3.23) 

(3.24) 

All other terms on the right-hand side of (3.19) and (3.20) must satisfy the condition 
of zero-normal derivative on the body surfaces. The general form of $ f s t ) ,  which 
satisfies Laplace’s equation and has zero-normal derivative on body j, is 

m 
( s , t )  = Xj:Q+ c ( X E t )  cosm$,++%t) sinm$,) ( P ~ + P ; ~ ) .  (3.25) 

For $yvl ) ,  6 y . l )  and J y * 2 )  particular solutions satisfying the boundary conditions 
(3.22)-(3.24) are to be added to this; these are 

m-1 
6,. c 

(3.26) 

(3.27) 

and (3.28) 
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Matching these forms of the inner solution with the intermediate solution (3,.11) 
yields 

(3.29) 

correct to order e4. A careful examination of the matching equations shows the 
expression for Xi2) to be exact. The coefficients in (3.29) determine the outer solution 
to leading order in p. Details of the inner and intermediate solutions are not required 
in the present work, though for completeness they are recorded in Appendix A. 

4. An array of floating hemispheres 
Let each body be a floating hemisphere (i.e. with the plane face at the mean free 

surface) of radius a. The water depth is taken to  be infinite, that is kh+ 00 in (2.4), 
so that a wavetrain incident from large negative x is described by the potential 

+inc = exp {K(iz - 41, (4.1) 

where the wavenumber K = w2/g.  The scattered wave potential #(x, y, z )  must satisfy 
(2.2) and (2.3) with the body boundary conditions 

, p , = a  ( j = 1 , 2  ,..., N ) ,  -- a eK(iz-r) - -- 
aP, a& 

where p, is a spherical polar coordinate as defined in $2. 

4.1, Outer/intermediate matching 
Scaled coordinates for the outer region are defined by 

P = KX, $ = Ky, .2 = Kz (4.3) 

so that +(P,$, z”) ( = #(x, y ,  z ) )  satisfies Laplace’s equation within the fluid region and 
the free-surface condition 

ap A 

- + $ = O ,  I = O .  (4.4) azA 

For the intermediate region appropriate scalehoordinates are 

so that &z, g, Z) ( = +(x, y, z ) )  satisfies Laplace’s equation in the fluid region and the 
free-surface condition 

(4.6) 
-+p$=O, 36 z = o ,  
aZ 

16 FLY 185 
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where p = KZ. In contrast to the vertical cylinder case, the leading-order outer 
solution is fully determined by the leading-order intermediate solution ; put 

d = p$(2) + 0 ( ~ 3 )  

and f$ = p p  + O(p2). (4.8) 

$2) = A ~ ) Y ~ ( + , z ) +  x (A:) cosrn$+Bg) sinm+) ym(+,;), 

(4.7) 

The outer solution &2) may be expressed in terms of generalized wave sources 

(4.9) 

(Thorne 1953) so that 
m 

m-1 

where Ym(P,Z) = fOm - :+; e-kiJm(k+) dk, (4.10) 

and J, is a Bessel function of the first kind and order m. Each source individually 
satisfies Laplace's equation, the free-surface condition (4.4) and the radiation 
condition. The intermediate solution $(l) is constructed from singularities within 
each body that satisfy Laplace's equation and, from (4.6) and (4.8), 

thus 

a p  
-- - 0, e, = in; (4.11) 

2 m + y c o s e  m m  + Z X (CJ!Ln cos (2m + 1) $, + DJfAn sin (2m+ 1) $,) p2n+!2n+, ' } , (4.12) 
m-0 n-m P 

where PE is the associated Legendre function of degree n and order m (note that 
(4.11) is satisfied by taking m + n  to be even). The complex constants Ah2),&), . . . , 
By), . . . and A::&,, . . . are determined by the matching. The expansion of Y,,, in 
spherical polar coordinates, required for the matching, is given by Hulme (1982), 
along with a number of other results relevant to the present work. The leading-order 
outer solution is 

d ( 2 )  = Yo(,A,&) z A I, 00' (4.13) 
N 

5-1 

which depends only on the magnitude of the apparent source within each body. 

4.2. Intermediate/ inner matching 
The scaled coordinates for the inner region of body j are defined by 

(4.14) 

so that $,(Z,, g,, Z) ( = #(z, y, 2)) satisfies Laplace's equation, the free-surface condition 

(4.15) 
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and the body boundary condition 

The inner solution is expanded in ,u as 

6, = p p  + O(p2) 

and then 6j1) is further expanded in E as 

(4.16) 

(4.17) 

@ = @. 1) + E 2 $ q l .  2 )  + . . . , (4.18) 

all the gauge functions being integer powers of E .  A similar expansion is adopted for 
$(l) though, as previously, it is perhaps simpler to think of it as an expansion of the 
coefficients in (4.12). 

The body boundary condition for 6j1q1) is, from (4.16), 

(4.19) 

while the remaining terms on the right-hand side of (4.18) have zero-normal 
derivative on the body surface. The free-surface condition (4.15) yields 

(4.20) 

The general solution of Laplace’s equation satisfying (4.20) and having zero- 
normal derivative on & = 1 is 

with the complex constants &3, . . . to be determined from the matching. For 6j1y l )  

there is an additional particular solution, satisfying (4.19), 

where, from Hulme (1982, equation B lo ) ,  

(4.23) 

Matching with the intermediate solution gives 

K,,oo=&2, j= 1,2 ,..., N, (4.24) 

exactly, which determines the outer solution to leading order in p. Further details of 
the intermediate and inner solutions are given in Appendix A. 

16-2 
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5. The mean drift force 
The mean drift forces and moments on a body have been related to the far field of 

the fist-order scattering potential by Maruo (1960) and Newman (1967). The result 
for the mean horizontal drift force in the direction of wave advance is 

(2) - @( 2kh ) 
(1 - cos $) Jd($)I2 d$ 

f x  - 2xk "sinh2kh 

where p is here the fluid density and d($) is related to the far-field form of the 
scattered wave through 

The far-field potential in (3.12) for the cylinder array may be written in the form 
of (5.2) using the expansions of the Hankel functions for large argument (Abramowitz 
& Stegun 1965, p. 364). The leading-order approximation to the mean horizontal 
drift force on a single cylinder is 

To demonstrate the effect of interactions within an array, the ratio FP) of the drift 
force on N bodies to that on an isolated body is calculated. For the cylinder array 

which confirms the N2 enhancement found previously and also reveals higher-order 
interaction effects. The presence of these additional terms shows that the geometry 
of an array may affect wave forces even for very long waves. The existence of the 
higher-order terms is consistent with the calculations for two cylinders made by 
Eatock-Taylor & Hung (1985); for two closely spaced cylinders with the line of 
centres perpendicular to the direction of wave advance their results show further 
drift-force enhancement over and above an N2-fold increase. It is interesting to note 
that the O(c2)-term in (5.4) is identically zero for a number of specific geometries. 
This includes two cylinders with their line of centres at  an angle ix to the direction 
of wave advance and any number (2 3) of cylinders at the vertices of a regular 
polygon. For those geometries where the term is not identically zero its sign will 
change with the direction of wave incidence. A simple calculation shows that, for two 
cylinders, the enhancement of the drift force is greatest when their line of centres is 
perpendicular to the wave direction and least when they are aligned with the 
waves. 

The far-field form of the potential for scattering by an array of floating 
hemispheres is found from (4.13) and (4.24) using the result 

(5.5) 

(Hulme 1982, equation (2.8)). Hence the drift force on a single hemisphere is 

f p - fpSA2Un2(p&)3, (5.6) 



Mean drift forces on arrays of bodies due to incident long waves 479 

to leading order, and for an array of N hemispheres 

limFk2) = N 2 .  (5.7) 
I”- 

In this case the long-wave limit of the drift-force ratio has no higher-order correction 
term in e. For the cylinder array these terms arise from the dipole-like terms in the 
far-field potential, but there is no such term in the leading-order approximation to 
the far field for an array of hemispheres. 

The dissimilarity in the far-field potentials for the two cases is a consequence of the 
difference in the scattering properties of the individual bodies. The vertical cylinder 
extends throughout the depth whereas the hemisphere is localized near the free 
surface in deep water. The transition from one extreme to the other may be 
illustrated by the solution of Miles & Gilbert (1968) for a single truncated (i.e. not 
extending over the full depth) cylinder in finite-depth water. Using a variational 
technique they derive an approximation to the far-field potential of the scattered 
wave in the form m 

$( r ,  p, z )  - cosh k ( z - h )  C XmHm(kr) cosmp, (5.8) 
m-0 

where (5.9) 

and d is the clearance beneath the cylinder. Interest is in waves that are long 
compared with the body radius a so, if kh is taken to be O( l),  the size of xm depends 
principally on the relative magnitudes of d l h  and r m ( k a ) .  For ka < 1, 

( - #ka, m = 0, 
(5.11) 

Hence, if d l h  is O(ka) ,xo  - x1 while xm < x1 (m 3 2), so that to  leading order in ka 
the far field is of the same form as (3.12) for cylinders extending throughout the 
depth. Hence it is anticipated that the drift-force ratio will be given approximately 
by (5.4) for an array of truncated cylinders with little bottom clearance. On the other 
hand, if d / h  = O(1) then xo % xrn (m 2 1) and the low-frequency limit of the drift- 
force ratio is well approximated by (5.7). 

In the present work attention has been focused on the horizontal drift force on 
arrays of bodies due to very long waves. For practical purposes it is important to 
know how the strong interaction effects persist for shorter waves. Though, in 
principle, the present work could be extended to higher order for this purpose it 
would be more useful to consider more realistic geometries than those treated here. 
Eatock-Taylor & Hung (1985, 1986) and Kagemoto & Yue (1986) have reported a 
number of calculations for various geometries which illustrate the possibility of 
significant drift-force enhancement over a range of wavelengths. However, more 
work for a greater variety of geometries is required to obtain a full understanding. 

The solutions presented here may be used to calculate other hydrodynamic 
quantities in addition to the horizontal drift force, and some results are given in 
Appendix B. Eatock-Taylor & Hung (1986) have already pointed out that radiation 
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damping coefficients will also obey an N2 enhancement law for low frequencies, and 
this is confirmed by (B 10). Other quantities such as first-order exciting forces and 
vertical mean drift forces have a simple N-dependence for arrays of bodies. The 
common factor linking damping coefficients and the horizontal drift force is that each 
is related to the wave-making properties of a body, as can be seen from well-known 
expressions in terms of the far-field radiated or scattered waves (e.g. (5.1)). The other 
hydrodynamic forces mentioned above are essentially near-field quantities. 

One feature of the horizontal-drift-force ratio for an array of cylinders, (5.4), is its 
dependence on the array configuration. The results given in Appendix B show that 
similar behaviour is found for other quantities in both the cylinder and hemisphere 
cases. In particular this is true for the first-order exciting force. It is quite common 
to assume that the ratio of the exciting force on a body in an array to that on the 
same body in isolation tends to one in the long-wave limit. The present results show 
that this need not be the case. 

The author is grateful to Dr M. McIver for a number of useful observations. 

Appendix A. Intermediate and inner solutions 

inner solutions are correct to O(e3).  
All terms in the intermediate solutions are given correct to O ( E ~ ) ,  while terms in the 

A.l .  Vertical cylinders 
Intermediate solution, (3.9) : 

$(2.1) = !@N, exactly; 

Inner solution, (3.18) : 

$ J 2 . l )  = g2N, exactly; 
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A.2. Hemispheres 

Intermediate solution, (4.8) : 

Inner solution, (4.17) : 

Appendix B. Other hydrodynamic quantities 
Given below are a number of results that may be deduced from the solutions 

presented. In each case the leading-order behaviour for long waves is given, with 
higher-order interaction effects included to the order permitted by the inner solutions 
of Appendix A. 

B. 1. Vertical mean drijl force 

Calculated by integration over the body surface. The force on a hemisphere within 
an array is 

fi2) - ipgA2anp(#+K+O(s3)), (B 1) 

where = 0.02878.. . . E m  E n  Jmn 
m m  

K =  I: z 
,,,-I n-1(2m + 1) (2n + 1) 

J o  

Using a standard relation (Abramowitz & Stegun 1965, equation 8.5.4) and 
integration by parts, it may be shown that 

2(m+n+1)Jmn = (2m+1) P:n(P)p:m-l(P)dp+ (2%+1) P:m(p)pLl(P)dP, 

(B 4) 
l l 

which can be evaluated using equation (B 17) of Hulme (1982). 

B.2. First-order exciting force 
Calculated by integration over the body surface. For waves incident at  an angle /3 to 
the negative x-axis the components of the exciting force on cylinder j in an array of 
N cylinders are : 

f p) - - 2 ~ i  pgAah kh +O(e4)}. (B 6) 
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For a hemisphere : 

sina 
f;) - -nipgAa2p sin/3-tis2 X d + O ( s 3 ) } ,  { (B 8)  

(B 9) 

n-1 Ri:, 
n + 3  

f L1) - -pngAa2. 

The total force on an array is obtained by summation over j ,  the O(c2)-terms within 
the braces of (B 7) and (B 8) are then identically zero. 

B.3. Radiation damping coeflicients 
These may be calculated directly from the first-order exciting forces using a known 
relation (Mei 1983, pp. 321 and 327). For example, the surge-surge damping 
coefficient for an array of vertical cylinders is 
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